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Abstract. A comprehensive group of reactive nitrogen species (NO, NO2, HNO3, 

HO2NO2, PANs, alkyl nitrates, and aerosol-NO3
-) were measured in the troposphere and 

lowermost stratosphere over North America and the Atlantic during July/August 2004 

(INTEX-A) from the NASA DC-8 platform (0.1-12 km).  Less reactive nitrogen species 

(HCN and CH3CN), that are also unique tracers of biomass combustion, were also 

measured along with a host of other gaseous (CO, VOC, OVOC, halocarbon) and aerosol 

tracers.  Clean background air as well as air with influences from biogenic emissions, 

anthropogenic pollution, biomass combustion, and stratosphere was sampled both over 

continental U. S., Atlantic and Pacific.  The North American upper troposphere was found 

to be greatly influenced by both lightning NOx and surface pollution lofted via convection 

and contained elevated concentrations of PAN, ozone, hydrocarbons, and NOx.  Under 

polluted conditions PAN was a dominant carrier of reactive nitrogen in the upper 

troposphere while nitric acid dominated in the lower troposphere.  Peroxynitric acid 

(HO2NO2) was present in sizable concentrations always peaking at around 8 km.  Aerosol 

nitrate appeared to be mostly contained in large soil based particles in the lower 

troposphere.  Plumes from Alaskan fires contained large amounts of PAN and very little 

enhancement in ozone.  Observational data suggest that lightning was a far greater 

contributor to NOx in the upper troposphere than previously believed.  NOx and NOy 

reservoir appeared to be in steady state only in the middle troposphere where NOx/NOy 

was independent of air mass age.  A first comparison of observed data with simulations 

from four 3-D models shows significant differences between observations and models as 

well as among models.  These uncertainties likely propagate themselves in satellites 

derived NOx data.  Observed data are interpreted to suggest that soil sinks of 
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HCN/CH3CN are at best very small.  We investigate the partitioning and interplay of the 

reactive nitrogen species within characteristic air masses and further examine their role in 

ozone formation.   

 

1. Introduction 

 Reactive nitrogen species play a central role in the chemistry of the polluted and 

unpolluted atmosphere.  They critically determine levels of ozone, acidity, and 

atmospheric oxidation potential [Crutzen, 1976; Singh et al., 2003a].  When deposited, 

they act as nutrients in terrestrial and marine ecosystems.  The main known constituents 

of reactive nitrogen in the troposphere are NO, NO2, peroxyacyl nitrates (PANs; 

RC(O)OONO2), nitric acid (HNO3), peroxynitric acid (HO2NO2), alkyl nitrates 

(RONO2), and particulate nitrate (NO3
-).  Other minor constituents such as HONO, NO3, 

and N2O5 are also present but are quickly decomposed in day-light [Wayne et al., 1991].  

Similarly somewhat long-lived species such as HCN and CH3CN (lifetime ≈ 6 months) 

are globally abundant products of biomass combustion [Singh et al., 2003b and 

references there in].  In most previous studies it has been possible to measure only a 

subset of these reactive nitrogen species and often the data have been limited to the lower 

troposphere.  The Intercontinental Chemical Transport Experiment-A (INTEX-A) offered 

a unique opportunity to investigate the partitioning and distribution of reactive nitrogen 

species from the North American troposphere at a level of detail previously not possible.  

INTEX-A was a major field campaign conducted principally over North America 

(NA) and the Atlantic in the summer of 2004 under an international consortium called 

ICARTT (International Consortium for Atmospheric Research on Transport and 
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Transformation).  ICARTT effort was jointly organized by partners from U. S., Canada, 

United Kingdom, Germany, and France and its design and implementation was closely 

coordinated [Singh et al., this issue].  A comprehensive suite of reactive nitrogen 

constituents, ozone, hydrocarbons, aerosols, chemical tracers, and meteorological 

parameters were measured aboard the NASA DC-8 and partner aircrafts in the 

troposphere and the Lower Most Stratosphere (LMS).  In this manuscript we mainly use 

observations from the DC-8 to describe the distribution and partitioning of measured odd 

nitrogen and its relationship with ozone under polluted and pristine conditions.  

Observational data are also compared with simulations from multiple models of transport 

and chemistry to assess our present knowledge of photochemical theory as well as 

sources and sinks of reactive nitrogen.   

 

2. Measurements 

The intensive observational phase of INTEX-A was carried out from July 1 to 

August 15, 2004 over NA.  The NASA DC-8 conducted 18 science flights extending 

from the mid-Pacific to the mid-Atlantic and covered much of the troposphere (0-12 km).  

Most intensive sampling was done over the eastern United States in collaboration with 

the NOAA P-3 that operated below 7 km altitude.  During this period the UK BAe146 

(ceiling 10 km) and the German Falcon (ceiling 13 km) sampled air downwind of NA 

over the Atlantic Ocean.  A map of the geographical extent covered during INTEX-

A/ICARTT and a summary of individual flights as well as instrumentation is provided in 

the overview papers by Singh et al. (this issue).  The meteorological description for the 

region and for each of the missions are described by Fuelberg et al. (this issue) who also 
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provided detailed 5-10 day back trajectories along DC-8 flight tracks for the entire 

INTEX-A mission. 

The NASA DC-8 aircraft was equipped with several in-situ instruments 

measuring ozone, reactive nitrogen species, aerosol composition, and a variety of 

chemical tracers. Nitrogenated constituents measured aboard the NASA DC-8 included 

NO, NO2, HNO3, HO2NO2, PAN, PPN, alkyl nitrates, aerosol nitrate, HCN, and CH3CN. 

NO3 and N2O5, which are of importance in nighttime chemistry, were also measured on 

the NOAA P-3 [Brown, et al. 2003].  The methods used to measure these species have 

been previously published and are summarized in Singh et al. [this issue] and references 

there in.  Simply stated, ozone was measured by NO/O3 chemiluminescence, PANs by 

electron-capture gas-chromatography (GC), HO2NO2 by chemical Ionization Mass 

spectrometry, nitric acid by mist chamber/IC technique, aerosol nitrate by filter 

collection, hydrocarbons by grab sampling and subsequent GC-FID/MS analysis, NO2 by 

a Laser-Induced-Fluorescence (LIF), NO by chemiluminescence, and nitriles by GC 

using a Reduction Gas Detector.   

A fast response CIMS instrument on the NOAA P-3 [Flocke et al, 2005] 

measured PAN and PPN which were found to be linearly correlated ([PPN] = 0.11 

[PAN]; R2 = 0.86).  We have used this expression for estimating PPN from PAN on the 

DC-8 when appropriate.  We also note that the NO instrument on the DC-8 had limited 

sensitivity and was suitable for measuring mixing rations >70 ppt.  NO calculated from 

NO2 data (sensitivity ≈ 10 ppt) using a steady state box-model agreed well with measured 

values for NO>100 ppt [Crawford et al., this issue].  To obtain a uniform data set we 

have defined NOx as sum of measured NO2 and calculated NO.  Additionally, Total 
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Peroxyacyl Nitrates  and Total Alkyl Nitrates were also determined aboard the DC-8 via 

indirect methods employing a combination of thermal dissociation and LIF detection of 

NO2 [Day et al., 2002].  

 

3. Data Analysis and Models 

 Merged data files were created to time align species measured with varying time 

resolutions and these have been used in this study.  We have also used a variety of 

chemical and meteorological filters for purposes of air mass characterization.  The 

principal chemical filter used was based on CO mixing ratios.  When CO data were 

unavailable, C2H6 or C2H2 observations, which tended to be linearly correlated with CO, 

were used to fill data gaps.  Although INTEX-A data were principally obtained in the 

troposphere, stratospheric influences were frequently encountered.  Two stratospherically 

influenced data subsets were created.  These included a stringent subset (O3>200 ppb; 

CO<60 ppb; and Z>7 km) used primarily for defining LMS composition.  A somewhat 

looser definition (O3>120 ppb; H2O<100 ppm and Z>7 km) was employed to also 

remove mixed stratospheric/tropospheric influences from the tropospheric subset.   This 

subset has been principally used for tropospheric characterization in this study.  

Tropospheric data were further divided into: (i) Clean background (CO: 60-90 ppb or 

C2H6: 250-600 ppt); (ii) Polluted air masses (CO: 90-240 ppb or C2H6: 600-3000 ppt); 

and (iii) Episodic (CO: >240 ppb or C2H6: >3000 ppt).  Episodic influences generally 

involved identifiable plume encounters.   

 Figure 1a,b shows the atmospheric distribution of HCN and CO, tracers of 

biomass combustion and general pollution respectively, for these subsets.  It is evident 



7 

from HCN profiles that Biomass Burning influences were present throughout the 

troposphere during all periods of pollution.  High pollution events (Episodic) contained 

enhanced signatures of biomass combustion.  Further, both HCN and CO profiles provide 

a reasonable description of what can be expected to be present in the clean background 

air from historical data in this season [Holloway et al., 2000; Zhao et al., 2002; Edwards 

et al., 2004].  Data were also segregated geographically to represent the Pacific, Atlantic, 

and Continental regions.  Multiple tracers were used to identify specific plumes 

originating from forest fires, anthropogenic emissions, convection and lightning, and 

stratosphere.  

Total reactive nitrogen (NOy), although not specifically measured in this study, 

was defined as follows: 

 

NOv =  NO + NO2 + HNO3+ PAN + PPN + HO2NO2+ ΣRONO2 + NO3
- 

 

In several previous studies the extent to which aerosol nitrate was sampled as NOy has 

not been accurately known [Miyazaki et al., 2005].  During INTEX-A, aerosol nitrate 

was a small fraction of the total NOy and has been included.  N2O5 and NO3 

concentrations were extremely low and contributed negligibly to NOy during day and 

minimally (<0.1% for Z>1 km) at night [Brown et al., 2005]. 

 The data collected during INTEX-A were compared with results from three 

global and one regional Chemical Transport Models (CTMs).  The three global CTMs 

used in this study included GEOS-CHEM [Bey et al., 2001; Hudman et al., this issue], 

MOZART [Horowitz et al., 2003; Pfister et al., 2005], and RAQMS [Pierce et al., 2003; 
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this issue].  The global models had a 2˚x2.5˚ nominal resolution.  The regional model 

STEM had finer resolution and derived its boundary conditions from the MOZART 

global model [Tang et al., 2004; this issue].  The meteorological and emission fields input 

into these models were determined independently by each group.  The total global NOx 

source in these models varied from 40 to 50 Tg N yr-1.  However, the distribution of these 

emissions varied according to the model.  As an example, global lightning source of NOx 

(Tg N yr-1) in RAQMS, GEOS-CHEM, and MOZART was 3, 5, and 9 respectively.  

More details on these models and their simulation techniques are being published 

separately [Hudman et al., this issue; Pierce et al., this issue; Tang et al., this issue].  

 

4. Results and Discussion. 

 

4.1 Partitioning and Atmospheric Behavior of Reactive Nitrogen: 

Figure 2a,b show the partitioning of reactive nitrogen in the troposphere and the 

mean vertical structure of O3 and NOv based on data collected in INTEX-A.  Tables 1 

provides additional statistical information on the vertical structure of selected reactive N 

and tracer species.  Table 2 shows the breakdown of individual C1-C5 alkyl nitrates 

whose sum is presented in Figure 2a and Table 1 in altitude bins representing lower 

troposphere (LT), middle troposphere (MT) and upper troposphere (UT).  Mixing ratio of 

Total Alkyl Nitrates (TANs), measured at altitudes below 4 km by their conversion to 

NO2, was some 10 times larger than the sum of individually measured straight chain alkyl 

nitrates (Table 2).  These measurements suggest that sizable mixing ratios of higher alkyl 

nitrates (e. g. isoprene nitrate) may be present in the U. S. continental boundary layer.  In 
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much of this study we have only used the more specific and presumably more accurate 

observations of individual alkyl nitrates.  It is evident from Figure 2a that although 

reactive nitrogen is principally emitted as NO, throughout much of the troposphere it 

largely exists in its secondary reservoir forms.  The total column of NOx in the 

troposphere constituted only about 15% of the NOy.  PAN and HNO3 were the dominant 

odd nitrogen species, containing some 65% of NOy, with PAN dominating in the UT and 

HNO3 in the LT.  A moderate fraction of Reactive N in the UT was also due to HO2NO2 

which was directly measured for the first time in this mission (Kim et al., this issue).  

Gaseous and aerosol nitrates comprised a very small fraction (<5%) of the tropospheric 

NOy reservoir.  As stated earlier, unmeasured alkyl nitrates (e. g. isoprene nitrate) may 

contribute up to 10% to NOy in the continental boundary layer.  Unlike O3 which 

increased monotonically (Figure 2b), NOv showed a C-shaped profile with high 

concentrations near the surface and the UT.   

 NOx was the dominant reactive N species in the UT (Figure 2a).  Mean NOx/NOv 

ratios of 0.3-0.6 here exceeded by a factor of two or more those found in the polluted 

surface layer and values reported from the mid-latitude UT downwind of Asia [Singh et 

al., 1996; Kondo et al., 1997] and NA [Jaegle et al., 1998; Koike et al., 2000].  In these 

and other studies, C2H2/CO ratio has been extensively used as a qualitative measure of air 

mass age.  Figure 3 shows a plot of the NOyi/NOv as a function of air mass age.  Because 

of the relatively short lifetime of NOx compared to the reservoir species, NOx/NOv is 

expected to decrease with air mass age.  This is clearly found to be the case in the lower 

troposphere (Figure 3a) where the lifetime of NOx is short (<0.5 days) and NOx/NOv 

decreased by a factor of 3 with age.  In the middle troposphere (2-7 km), the NOx/NOv 
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ratio was both low (≈ 0.1) and nearly independent of air mass age.  We believe that this is 

indicative of the existence of a steady state between the NOv reservoir species and NOx 

{PAN  NO2 + PA; HNO3 + hν  NO2 + OH; HNO3 + OH  NO2 + O + H2O}.  

These low NOx/NOv ratios are also seen in extremely aged air masses in the LT.  Model 

calculations by Jaegle et al. [1998] suggest that a NOx/NOv ratio in steady state should be 

between 0.05-0.1. 

 The UT region (7-12 km) behaved completely differently with high NOx/NOv 

ratios that also increased as a function of age.  This is only possible if fresh injections of 

NOx are being made in the UT.  Benzene (C6H6) is a hydrocarbon of surface origin with 

about a 7 day lifetime, slightly longer than NOx.  NOx/C6H6 ratios of about 60 during 

convective conditions in the UT are significantly higher than the ratios of about 10 even 

under polluted conditions suggesting that lofting of surface NOx by convection could not 

have contributed more than 20% to the UT NOx.  The increase with age is likely due to 

the moderately long life-time of NOx in the UT (4-6 days) that allows accumulation of 

NOx from lightning and convective sources [Jeker et al., 2000].  Unlike the middle 

troposphere, a steady state with NOy reservoir species was not achieved in the UT.   

 The INTEX-A time frame saw wide spread lightning throughout central and 

eastern NA [Porter et al, this issue].  A gridded (11 km x 11 km) inventory of lightning 

flashes (cloud to ground) over the United States during the entire INTEX-A period 

showed 100-250 flashes nearly everywhere east of 110 ˚W with large regions of 500-

1600 flash counts.  Comparison with previous 6 years suggested that these lighting flash 

frequencies were slightly above average (≈10%) but fairly typical of the summer season.   
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Indeed lightning source over NA during INTEX-A may have been 4-8 times what was 

assumed in the models (0.4 TgN y-1).  Aicrafts add some 0.5 TgN y-1 to the UT globally 

[Brasseur et al., 1998].  We estimate that over NA these emissions (≈ 0.1 TgN y-1) 

contribute less than 50 ppt to UT NOx and make only a small contribution in comparison 

with lightning effects.  As we shall see later (Figures 4 and 5) lower stratosphere 

contained much less NOx than the UT and hence was a minimal contributor.  

Observations performed over NA in the spring during the SUCCESS campaign showed 

substantially lower NOx/NOy ratios in the UT (≈ 0.15) compared to INTEX-A (≈ 0.3) 

presumably due to the absence of significant lightning despite several deep convective 

events [Jaegle et al., 1998].  We believe that lightning was a major source of NOx in the 

UT during the summer of 2004. 

 The response of PAN and HNO3 to aging was unlike NOx but similar throughout 

the troposphere. At all altitudes NOy fraction of PAN and HNO3 declined and increased 

respectively with air mass age.  The net increase in HNO3 with age closely approximated 

the decrease in PAN, consistent with the notion that PAN reservoir feeds into NOx and 

subsequently HNO3. 

 

4.2 Distribution of Reactive Nitrogen: 

4.2.1. Reactive Gaseous Nitrogen. Figure 4a-d shows the abundance of reactive 

N species under “characteristic” conditions in the troposphere and the LMS.  Under 

“clean” or “near background” conditions (Figure 4a), PAN and NOx were extremely low 

in the LT and HNO3 dominated.  PAN gradually increased with altitude and in the UT 

was nearly as abundant as HNO3.  NOx mixing ratios increased rapidly above 6 km and 
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become dominant above 8 km.  HO2NO2 was present in sizable mixing ratios in the UT 

peaking at about 8 km.  It is thermally highly unstable and easily decomposed at 

temperatures below 7 km (τ < 3 hrs).  Above 7 km, its loss is slower (τ = 8 hrs) mostly 

dictated by reaction with OH and photolysis.  The maximum observed at about 8 km 

coincides with a region of minimum loss.  At still higher altitudes the loss rate is nearly 

constant but production tends to decline.  In the polluted subset (Figure 4b) nearly all 

concentrations were elevated and a C-shaped profile with large values in the UT and LT 

was evident for both NOx and NOv.  A dramatic change could also be seen in PAN which 

was now significantly more abundant than HNO3 at all altitudes above 4 km.  HO2NO2 

still peaked at 9 km but was nearly twice as abundant as under clean conditions largely 

due to the high NOx as well as HOx precursors available under these conditions (HO2 + 

NO2 -> HO2NO2).  Under all conditions, the NOx levels in the UT were larger than their 

surface values and could not be attributed to surface pollution alone.  These were likely 

due to the co-occurrence of convection and lightning influences.  Under episodic 

conditions (Figure 4c), involving extreme levels of pollution, NOy was extremely high (4-

6 ppb) and PAN continued to dominate over HNO3 to even lower levels.  High HO2NO2 

levels of 100-200 ppt, comparable to NOx, were seen within these plumes at moderately 

low altitudes.  Aerosol nitrate was present at concentrations much larger than NOx in 

these air masses.  The LMS composition was dramatically different where HNO3 and 

NOx were the dominant species with rather low PAN (Figure 4d).   

Figure 5a-c shows the transition from troposphere to LMS (O3< 440 ppb) for a 

select group of species.  The NOx mixing ratios of some 200-300 ppt in the LMS should 

be compared with some 600-3000 ppt in the UT (Fig 4a, b).  Similarly NOx/NOy ratio of 
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0.2 in the LMS can be compared with 0.6 at 12 km.   Since NOx levels in the troposphere 

continue to rise to the DC-8 ceiling altitude of 12 km, it is likely that a NOx maximum 

above this altitude was present with levels subsequently decreasing towards the 

tropopause.  Such high NOx maximum coincident with lightning conditions have been 

previously observed at subtropical latitudes and over Europe [Huntrieser et al., 2002; 

Ridley et al., 2004].  In the LMS, NOx and HCN levels remained relatively constant 

while PAN, CO, and H2O declined and HNO3 increased.  This behavior was similar to 

what has been previously reported from other locations and seasons [Singh et al., 1997].  

 Figure 6a,b shows the mean vertical structure of NOx and PAN from west to east 

over NA.  Since only one flight over the Pacific was conducted during INTEX-A, it is 

likely biased due to the encounter of Asian pollution in the UT.  To give a better 

perspective we have also shown the NOx and PAN distribution over the Pacific observed 

during Trace-P with a somewhat better statistical sample but in spring 2001.   It is evident 

that NOx levels in the UT increase from west to east.  Signatures of continental pollution 

were similarly seen.  This is evident in the lower troposphere for PAN although less so in 

the UT in part due to the relatively long lifetime of PAN in this region.  West to east 

gradients were also seen under clean conditions in part due to residual pollution 

influences and lightning effects.  We note that CO showed no west to east gradient in the 

UT.  Figure 7 shows the longitudinal variation in the upper troposphere (7-12 km) of O3 

and select reactive nitrogen species both under clean and actual observed conditions.  

Ozone mixing ratios in the UT were enhanced by 10-15 ppb (Figure 7a).  This has also 

been observed from the ozonesonde data analyzed by Cooper et al. [this issue].  A much 

larger increase is seen in PAN which is an excellent indicator of pollution and 
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photochemical influences (Figure 7b).  It is also evident from the NOx profile that 

lightning and the associated convection had a big impact over central US (Figure 7c).  

Correspondingly, little change is seen in HNO3 (Figure 7d), in part because of its high 

solubility and loss during wet convection.  In short the North Ameican UT appears to be 

greatly influenced by pollution resulting in substantial enhancements in ozone, PAN, and 

tracers of pollution.  

 

4.2.2 Aerosol Nitrogen.   Aerosol nitrate can be typically formed via reaction of NH3 and 

nitric acid (NH3 + HNO3 <-> NH4NO3).  Total aerosol nitrate (NO3
-) in INTEX-A was 

found to be moderately correlated with NH4
+ (R2=0.42) suggesting a chemical form such 

as NH4NO3.  An examination of the NH4
+ and SO4

-- ion balance (Figure 8a) clearly 

indicates that throughout INTEX-A excess sulfate was nearly always present suggesting 

insufficient ammonia for acid neutralization.  This is unlike what was observed in the 

Asian pollution outflow where excess ammonium was present and all SO4 had been 

neutralized [Miyazaki, et al., 2005].  Ammonia is preferentially converted to ammonium 

sulphate as long as SO4
-- is present [Seinfeld and Pandis, 1998], and indeed SO4

-- and 

NH4
+ were highly correlated (R2=0.85).  We conclude that NH4NO3 was not the 

preferential form of the aerosol nitrate observed over NA.  Figure 8b further shows that 

NO3
- was well correlated with soil elements like calcium.  As has been previously noted 

[Krueger et al., 2005], it appears that the source of this nitrate aerosol is HNO3 residing 

on and reacting with soil and crustal particles which are typically of large size (e. g. 

2HNO3 (g) + CaCO3 (s) -> Ca(NO3)2 (s)+ H2O + CO2).  This is further supported by the 

presence of extremely small measured concentrations of submicron NO3
-.  This form of 
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aerosol nitrate represents a somewhat permanent sink for reactive nitrogen eventually to 

be deposited on soil. 

 

4.2.3 Plumes. By employing a number of selected tracers, characteristic plumes sampled 

during INTEX-A were segregated into categories representing influences from Biomass 

Burning (B), Anthropogenic pollution (P), Deep Convection (C), and Stratosphere (S). 

For example, HCN and CH3CN were highly elevated in BB plumes and high O3 and low 

CO and H2O mixing ratios were characteristic of stratospheric influences.  Figure 9 

shows the distribution of selected species in these plumes as a function of altitude bins 

representing LT (0-2 km), MT (2-7 km), and UT (7-12 km).  Foremost is the appearance 

of high PAN and relatively low NOx in BB plumes (Figure 9a).  Another distinct feature 

was the high NOx mixing ratios observed in convectively influence plumes (Figure 9b).  

Despite the high NOx values encountered in these convective plumes, O3 was not 

significantly elevated (Figure 9c).  Similarly O3 was rather low in BB burning plumes as 

well.  It has been estimated that most of these convective plumes were only 2-3 days old 

[Bertram et al., this issue], and there may have been insufficient time for significant O3 

production in the UT.  Both HNO3 and aerosol nitrate were significantly elevated in 

plumes influenced by anthropogenic and biomass burning pollution (Figure 9d).  Law et 

al [this issue] have explored the development of some of these plumes over the Atlantic 

and conclude that net O3 production does occur but is greatly slowed due to the control 

exerted by PAN on the NOx reservoir. 
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4.2.4 Nitrogen Tracers of Biomass Combustion.  HCN and CH3CN are both unique 

tracers of BB combustion and were linearly correlated in this data set (R2= 0.76).  Figure 

10 shows the vertical structure of HCN and CH3CN over the Atlantic and continental 

NA.  There is the indication of both oceanic and soil sink for these species.  Although 

oceanic sink has been known, soil sink is not known and has not been studied.  Figure 10 

also shows similar profiles for CHBr3 and CH3I which are both known to have dominant 

oceanic sources.  It is evident from Fig. 10 that at least in surface layers over land oceanic 

influences were widespread.  To further explore the soil sink potential for nitriles we 

performed trajectory analysis and looked at their distribution for selected cases where 

trajectories remained low and over the ocean with those when they remained low and 

over land for 5 days.  Overland air masses had mixing ratios of 260 (±20) ppt and 135 

(±14) ppt for HCN and CH3CN while over water trajectories had corresponding mixing 

ratios of 149 (±33) ppt and 109 (±18) ppt.  In short air masses with long contact with 

surface water are far more depleted than those with contact with soil.  Despite the 

appearance of a sink, we conclude that HCN and CH3CN soil sinks are negligible or 

extremely small.  This could be due to low contact time between these molecules and soil 

bacteria allowing rapid re-release of deposited nitriles.  The column of HCN deduced 

from these measurements is in good agreement with that reported by Zhao et al. [2000] 

from ground based spectroscopic measurements over japan.. 

 

4.3. Model Simulations 

 Model output was generated from four selected models (GEOS-CHEM, 

RAQMS, MOZART and STEM) along the DC-8 flight tracks and the results were 
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directly comparable with observations.  Figures 11-13 provide a comparison of 

observations and model simulations using a large grid over eastern NA (30-50˚N; 260-

320˚E) where most intense aircraft sampling was performed during INTEX-A.  Figure 11 

shows observed and modeled mean mixing ratios of O3 and NOy and the corresponding 

variability.  As is evident, the four models under consideration deviate from each other 

and the observations at all altitudes.  STEM substantially over-predicts O3 in the UT and 

NOy in all of the troposphere.  RAQMS has extremely low NOy but over-predicts O3 

suggesting an unusually large stratospheric input.  Models in general tended to predict 

lesser variability (Figure 11c,d) than observations in large part due to the their greater 

spatial averaging.   

 Figure 12 shows the same for NOx, HNO3. PAN and HO2NO2.  It is evident that 

except in the case of STEM, NOx is substantially underpredicted by all models in the UT.  

GEOS-CHEM improved its overall prediction by increasing the lightning source over NA 

by a factor of four [Hudman et al., this issue].  It has recently been suggested that cloud 

to cloud discharges may be a far greater source of NOx than has traditionally been 

believed [Ridley et al., 2005].  Clearly an underestimation of lightning source and 

uncertainties in its distribution appears to be a common problem in these models.  STEM 

also over predicts near surface NOx levels and the associated HNO3 by 50-100%.  It 

appears that STEM is using an earlier emissions inventory that does not take into account 

the substantial emission reductions that have been achieved in the last 5 or so years.  An 

intriguing aspect is that in the UT HNO3 is typically over estimated while NOx is 

underestimated.  As has been seen elsewhere (Crawford et al., this issue), models are 

significantly over predicting OH (and HO2) levels resulting in an over prediction in 
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HNO3 (NO2+OH  HNO3).  To simulate HNO3 correctly a significant revision in the 

HOx field would be necessary.  The situation with PAN (and HO2NO2) is also confusing 

with significant over predictions by MOZART in the middle and upper troposphere and 

STEM in the LT.  Figure 13 shows the distribution of total aerosol NO3 and its simulation 

by two models.  These models are able to simulate the UT or LT with reasonable 

accuracy but not both.  While models have become more complex, it is not clear if the 

overall performance in simulating reactive nitrogen has improved over the last decade 

[Emmons et al., 1997; Thakur et al., 1999]. 

 Our ability to simulate the reactive nitrogen fields and O3 in the troposphere is 

less than satisfactory both for the NOx and HOx fields.  Uncertainties are clearly due to 

errors in sources and meteorology but probably include fundamental limitations in our 

knowledge.  Organized model inter-comparisons and more validation data are required to 

better pin point the causes of these uncertainties and potential solutions.  In recent years, 

it has been possible to retrieve NOx columns in the troposphere from satellite 

observations and these have been used to provide extensive data coverage as well as 

inferences of NOx emissions (Richter et al., 2005; Heckel et al. 2006; Martin et al., 2006). 

Retrieval of satellite data requires a priory knowledge NOx structure and the accuracy of 

retrievals is often dependent on this a priory knowledge.  Traditionally model profiles 

have been used for this purpose.  The NOx observations from this study clearly show that 

the vertical structure of NOx across the troposphere is highly complex and its extensive 

characterization necessary for accurate satellite retrievals.  
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5.0 Conclusions 

  INTEX-A provided a most detailed description of the reactive nitrogen, ozone, 

and tracer field in the North American tropsosphere.  The observations clearly show that 

the UT as well as LT is significantly polluted across NA.  The UT is also greatly 

influenced by deep convection and far greater lightning than hitherto believed.  Only in 

the middle troposphere is NOx in steady state maintained by the NOy reservoir. NOx/NOy 

ratios are significantly more elevated in the UT than in the LT and support fresh 

injections of NOx originating in the troposphere.  PAN appears to be the major carrier of 

reactive nitrogen in the UT while much of it exists in the HNO3 reservoir in the LT.  

Presently model simulations of these species cannot be performed satisfactorily as 

models disagree with each other as well as observations to a substantial degree.  It is 

possible that in some cases disagreements in the reactive nitrogen simulations are due to 

uncertainties in the HOx field.  The causes of these disagreements are not fully 

understood and need to be further investigated.  The vertical structure of NOx over the 

continents is far more complex than represented by models making it extremely difficult 

for satellites to accurately retrieve NOx data using remote sensing techniques.  Extensive 

validations are necessary to improve models as well as satellite determinations of NOx. 
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Figure 1: Distribution of two selected tracer species (HCN and CO) under “background”, 
“polluted”, and “episodic” conditions. See text for more detail. 
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Figure 2: Partitioning of reactive nitrogen in the troposphere (a) and the mean vertical 
structure of O3 and NOv (b) based on INTEX-A observations  
 



27 

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2

0-2 km
2-7 km
7-12 km

N
O

X
/N

O
y, p

pt
/p

pt

(a)

0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2

H
N

O
3/N

O
y, p

pt
/p

pt

C
2
H

2
/CO, ppt/ppb

Aged air  <-----------  Freshly polluted air

(c)

0

0.15

0.3

0.45

0.6

0 0.5 1 1.5 2

PA
N

/N
O

y, p
pt

/p
pt

 (b)

 
Figure 3: Reactive nitrogen as a function of air mass age in the lower (0-2 km), middle 
(2-7 km) and upper (7-12 km) troposphere (Lat: 30-50 ˚N; Long: 260-320 ˚E).  All data 
were divided into 10 age bins.  Each point shown above represents an average of 60-120 
observed data points.  
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Figure 4: Reactive nitrogen species in the troposphere and Lower Most Stratosphere. (a) 
Background/clean; (b) Polluted; (c) Episodic; and (d) lowermost stratospheric. See text 
for more detail. 
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Figure 5: Mixing ratios of key tracers and reactive nitrogen species in the Lower Most 
Stratosphere sampled in INTEX-A 
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Figure 6: NOx and PAN over the Pacific, continental North America, and the western 
Atlantic 
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Figure 7: Ozone and reactive nitrogen in the North American upper troposphere (7-12 
km; 30-45˚N)) under “background” (dashed) and all observed (solid) conditions  
 
 
 
 



31 

 

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

0 200 400 600 800 1000 1200 1400

N
H

4-2
xS

O
4, p

pt

NO
3
, ppt

(a)

(a)

0

300

600

900

1200

1500

0 300 600 900 1200 1500

C
a,

 p
pt

NO
3
, ppt

(b)

(b)

 
 
 
Figure 8 : Aerosol nitrate relationship with excess sulfate and calcium  
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Figure 9: Distribution of selected chemicals in plumes of biomass combustion (B), 
anthropogenic pollution (P), convection (C), and stratosphere (S)  
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Figure 10: Vertical distribution of oceanic sourced tracers and nitriles. 
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Figure 11: Observed and simulated mixing ratio and variability of O3 and NOy over 
eastern North America (30-50˚N; 260-320˚E). Top panels (a, b) -mean mixing ratios; 
Bottom panels (c, d) - relative variability  
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Figure 12: Observed and simulated mixing ratio of selected reactive nitrogen species over 
eastern North America (30-50˚N; 260-320˚E) 
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Figure 13: Observed and simulated aerosol nitrate concentrations and variability over 
eastern North America (30-50˚N; 260-320˚E).  Aerosol size cut off is 2.5 μm. 
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Table 1: Reactive nitrogen, O3, and CO mixing ratios in the North American troposphere during INTEX-A 

* Mean ± sigma (Median, No. of points) 
 

Table 2: Alkyl nitrate (C1-C5) mixing ratios in the North American troposphere during INTEX-A  
Altitude 

(km) 
CH3ONO2 

(ppt) 
C2H5ONO2 

(ppt) 
i-C3H8ONO2 

(ppt) 
n-C3H8ONO2 

(ppt) 
2-C4H10ONO2 

(ppt) 
3-C5H12ONO2 

(ppt) 
2-C5H12ONO2 

(ppt) 
∑RONO2 

(ppt) 
TANs** 

(ppt) 

0-2 
2.3 ± 0.7 
(2.1, 1467) * 

2.3 ± 1.1 
(2.0, 1467) 

5.4 ± 4.0 
(4.4, 1467) 

0.7 ± 0.5 
(0.6, 1467) 

4.6 ± 4.5 
(3.5, 1467) 

1.4 ± 1.4 
(1.1, 1469) 

1.8 ± 2.0 
(1.3, 1473) 

18 ± 13 
(15, 1473) 

191 ± 204 
(147, 1713) 

2-7 1.9 ± 0.4 
(1.9, 2198) 

1.5 ± 0.5 
(1.5, 2198) 

2.9 ± 1.7 
(2.6, 2198) 

0.3 ± 0.2 
(0.3, 2198) 

2.1 ± 2.0 
(1.6, 2198) 

0.5 ± 0.6 
(0.3, 2214) 

0.5 ± 0.7 
(0.3, 2219) 

10 ± 6 
(9, 2219)  

7-12 2.1 ± 0.5 
(2.1, 1890) 

1.7 ± 0.7 
(1.6, 1890) 

3.7 ± 3.0 
(2.9, 1890) 

0.3 ± 0.2 
(0.2, 1900) 

1.5 ± 2.1 
(0.7, 1894) 

0.2 ± 0.5 
(0.1, 1936) 

0.1 ± 0.3 
(0.03, 1950) 

10 ± 6 
(8, 1950)  

* Mean ± sigma (Median, No. of points) 
** Total Alkyl Nitrates (TANs) were measured in the lower troposphere (Z< 4 km) by thermally dissociating these to NO2 (see text).  

Altitude 
(km) 

O3 
(ppb) 

CO 
(ppb) 

NOx 
(ppt) 

HNO3 
(ppt) 

PAN 
(ppt) 

PPN 
(ppt) 

HO2NO2 
(ppt) 

NO3 
(ppt) 

NOy 

(ppt) 
∑RONO2 

(ppt) 
HCN 
(ppt) 

CH3CN 
(ppt) 

0-2 
48.9 ± 16.2 
(48.4, 2607)* 

132.1 ± 37.2 
(127.4, 2079) 

379 ± 823 
(148, 1866) 

893 ± 824 
(701, 2467) 

301 ± 339 
(186, 1666) 

32 ± 36 
(20, 1666) 

5 ± 8 
(2, 78) 

154 ± 183 
(101, 1834) 

1781 ± 1699 
(1374, 1283) 

18 ± 13 
(15, 1473) 

274 ± 76 
(267, 1007) 

136 ± 35 
(132, 1007) 

2-4 58.7 ± 11.8 
(58.4, 1332) 

112.7 ± 35.3 
(107.6, 1107) 

64 ± 63 
(52, 975) 

488 ± 358 
(404, 1279) 

214 ± 245 
(158, 1021) 

23 ± 26 
(17, 1021) 

10 ± 23 
(2, 615) 

110 ± 180 
(34, 418) 

809 ± 610 
(652, 766) 

11 ± 7 
(9, 899) 

337 ± 172 
(310, 582) 

153 ± 80 
(138, 587) 

4-6 63.3 ± 13.1 
(62.6, 1268) 

103.3 ± 26.7 
(99.6, 1027) 

54 ± 39 
(47, 976) 

317 ± 234 
(269, 1216) 

275 ± 228 
(217, 981) 

29 ± 24 
(23, 981) 

15 ± 31 
(8, 1094) 

90 ± 202 
(10, 511) 

733 ± 523 
(613, 737) 

9 ± 4 
(8, 828) 

296 ± 121 
(285, 563) 

144 ± 69 
(136, 570) 

6-8 72.4 ± 19.7 
(71.3, 1492) 

104.7 ± 51.8 
(96.9, 1241) 

113 ± 85 
(92, 1154) 

252 ± 185 
(210, 1415) 

354 ± 253 
(298, 1106) 

38 ± 27 
(32, 1106) 

41 ± 34 
(31, 1353) 

58 ± 202 
(13, 786) 

849 ± 511 
(755, 856) 

9 ± 5 
(8, 907) 

308 ± 258 
(273, 630) 

148 ± 97 
(137, 667) 

8-10 76.6 ± 20.2 
(74.3, 1523) 

102.3 ± 20.9 
(101.3, 1175) 

323 ± 288 
(240, 1256) 

202 ± 186 
(146, 1497) 

371 ± 217 
(339, 1138) 

39 ± 23 
(36, 1138) 

73 ± 40 
(66, 1406) 

27 ± 45 
(11, 909) 

1040 ± 570 
(931, 923) 

10 ± 6 
(9, 954) 

315 ± 138 
(297, 595) 

138 ± 40 
(133, 720) 

10-12 82.7 ± 20.5 
(82.2, 942) 

96.5 ± 22.8 
(93.7, 687) 

776 ± 900 
(552, 700) 

205 ± 153 
(159, 901) 

338 ± 208 
(295, 650) 

36 ± 22 
(31, 650) 

53 ± 30  
(49, 868) 

34 ± 60 
(21, 818) 

1430 ± 1052 
(1197, 465) 

8 ± 6 
(7, 586) 

274 ± 73 
(284, 404) 

141 ± 20 
(141, 406) 

0-12 64.2 ± 20.9 
(62.9, 9164) 

112.3 ± 37.8 
(106.2, 7316) 

275 ± 572 
(106, 6927) 

462 ± 558 
(285, 8775) 

308 ± 269 
(246, 6562) 

33 ± 28 
(26, 6562) 

42 ± 41 
(29, 5414) 

90 ± 167 
(28, 5276) 

1152 ± 1099 
(829, 5030) 

12 ± 9 
(9, 5647) 

299 ± 153 
(285, 3781) 

142 ± 63 
(136, 3967) 


